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What is the best input state?

What is the best estimation strategy?

Does entanglement improve the estimation?




The case of unitary channels

e Dense coding: dramatic effect of entanglement

Bennett and Wiesner, Phys. Rev. Lett. 69, 2881 (1992).

e Discriminating two unitaries: entanglement is not useful...

D’'Ariano at al, Phys. Rev. Lett. 87, 270404 (2001)
Acin, Phys. Rev. Lett 87, 177901 (2001)

e Estimating an SU(d) channel:  entanglement is very useful...

Fujiwara, Phys. Rev. A 65, 012316 (2001)
Acin et al, Phys. Rev. A 64, 050302 (2002)

and many others...




A natural question

Is it possible to understand the role of entanglement
once for all
in a general way?




Estimating group transformations

The rules of the game:
e we are asked to give an estimate ¢ of the transformation g
e we know only that g is an element of the group G

e we are allowed to prepare any input state
and to perform any quantum measurement on the output state.




What is the “best measurement”?

e Fix the a priori distribution dg
complete ignorance — uniform a priori distribution

e Fix a cost function c(g,9)
the “cost” is as smaller as the estimate g is nearer

to the true value g.

e Minimize the average cost

/dg/dg c(g,g) p(glg)

(= how much we need to pay if we play the game many times)

The “best measurement” depends on the choice of the cost function.




Cost functions in the case of phase estimation

For phase estimation one has the Holevo class:
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Theorem

All cost functions in the Holevo class lead to the same

optimal measurement.




A generalized Holevo class of cost functions (1)

invariant cost functions

y

e(hi,hg) = c(g,g)  VheG
g
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\ c(gh, gh) = c(g,

This requirement is satisfied if and only if

c(g.9)= D as X[

o€lrr(G)




A generalized Holevo class of cost functions (Il)

negative Fourier coefficients

a, <0 Yo # o

oo = trivial representation, U%(g) =1 Vg
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A little technicality: Wedderburn decomposition

Decomposing the Hilbert space:
H =D A, oCm™
HES

Decomposing a pure state:

W) = @Cu U,.)

HES

Decomposing the unitaries:

Ug:@ U;@)]lmu

HES
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The role of the external reference system

Adding an ancilla increases the dimension of the multiplicity spaces m,,:
Ug®]172:@ Ut @ (L, ®1g)
HES

If we exploit a reference system the multiplicity becomes m”™

n = deR.

If m, > d, there is no need of any ancilla!
We can exploit the entanglement between the virtual subsystems

that appear in the Wedderburn decomposition.
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For any compact group \
and for any cost function in the generalized Holevo class

the optimal input state has the form

) = D ﬂ W)

HES

\ where |IV,,)) /\/d,, is a maximally entangled state /

Entanglement between representation spaces and multiplicity

spaces is the real key ingredient for optimal estimation (!!)
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A first simplification

/ One only needs to take a state of the optimal form: \

) = D ﬂ W)

K and then to optimize the coefficients c,, J
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Looking for the best estimation strategy...

The most general estimation strategy allowed by Quantum Mechanics is
described by a POVM  P(g)

)
PG>0 VgeG (positivity)
[dg P(g)=1 (normalization)

\

Born rule for probabilities: p(@‘g) — Tl“[ P(@) ngUgT ]
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Covariant POVM'’s

p(glg) = p(hglhg)  Vhe G
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Theorem (Holevo)

For any possible estimation strategy,
there is always a covariant POVM
with the same average cost

/General form of a covariant POV®

P(§)=U; E U]

K where = > 0. /
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Let be |U) an input state of the optimal form.

For any compact group
and for any cost function in the generalized Holevo class

the optimal covariant POVM is

P(3) = Uy |n){n| U}

where

) =P Vdu e W)

HES
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Great simplification in the search for the optimal input state:

@e average Bayes cost for the optimal POVM?S

(C)=a0 + ) leu| G la]

w,VES

\ where C,, is a cost matrix. /

We only need to find the minimum eigenvalue of the cost matrix
and the corresponding eigenvector.
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An application: reference frames alignment

Two distant parties want to align their Cartesian reference frames:
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Step 1 Referring to her Cartesian frame, Alice prepares an entangled
state

A)Yy=all1T... D+l llT...T)+...

and sends it to Bob...
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Step 2 With respect to his Cartesian frame, Bob receives the state

Ag)=al /S A tel S )+

In other words:
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What is the best asymptotic performance?

The original claim was: (0 (1/N) (classical scaling)
A. Peres and P. F. Scudo, Phys. Rev. Lett. 87, 167901 (2001).
Bagan et al, Phys. Rev. Lett. 87, 257903 (2001).

/Some years later... (O (1/N2) (typical quantum improvement) \
Chiribella et al, Phys. Rev. Lett. 93, 180503 (2004)
Bagan et al, Phys. Rev. A 70, 030301(R) (2004)

Q/I. Hayashi, quant-ph /0407053 /

Is this the final answer?
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Using the theorem about optimal POVMs,

we can prove that the asymptotic scaling

872
(e) ~ N2

is the ultimate precision limit
imposed by the laws of Quantum Mechanics

to the alignment of two Cartesian reference frames.
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e Generalization of the Holevo class:
invariant cost functions with negative Fourier coefficients

e How to use entanglement:
what really matters is only the entanglement between
representation and multiplicity spaces

e Optimal input states:
direct sum of maximally entangled states

(w.r.t. bipartition representation/multiplicity spaces)
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e Optimal estimation strategy:
same optimal POVM
for any cost function in the generalized Holevo class

e An application:
optimality proof for reference frames alignment

Reference: G. Chiribella, G. M. D’Ariano, and M. F. Sacchi,
Optimal estimation of group transformations using entanglement,
quant-ph/0506267.
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